Hypothesis Testing

Terms, Terminologies, & Testing Methods

What is a **statistical hypothesis**?

It is a statement, report , or claim regarding a characteristic of one or more population parameters.

What is a **hypothesis testing**?

It is a process that uses sample statistics, based on sample evidence and probability, to test a claim about the value of a population parameters.

What is a null hypothesis H_0 ?

It is a statistical hypothesis that contains a statement of equality, such as \leq , \geq , or =.

What is an alternative hypothesis H_1 ?

It is the complement of the null hypothesis and must contain a statement of inequality, such as \langle , \rangle , or \neq .

What is a **type I error**?

It takes place when a true null hypothesis is rejected.

What is a **type II error**?

It takes place when a false null hypothesis is supported.

What are the Hypothesis Testing Four Outcomes?

Conclusion vs. Reality $\rightarrow \downarrow$	H_0 is true.	H_0 is false.
Support H_0	Correct Decision	Type II Error
Reject H_0	Type I Error	Correct Decision

What is a **significance level**?

It is the probability of making **Type I Error** and it is denoted by the Greek letter alpha α where $0 < \alpha < 1$.

What are the **probabilities of making errors**?

 $P(\mathbf{Type I Error}) = \alpha$ $P(\mathbf{Type II Error}) = 1 - \alpha$

What are the Hypothesis Testing Methods? 1) Traditional Method

When Computed Test Statistic Is In	Then	And	We Should
Non-Critical Region	H_0 is valid	H_1 is invalid	Support H_0 and Reject H_1
Critical Region	H_0 is invalid	H_1 is valid	Reject H_0 and Support H_1

2) P-Value Method

When P-Value Is	Then	${\rm And}$	We Should
Greater Than α	H_0 is valid	H_1 is invalid	Support H_0 and Reject H_1
Less Than Or Equal To α	H_0 is invalid	H_1 is valid	Reject H_0 and Support H_1

3) Confidence-Interval Method

Use $(1-2\alpha)100\%$ Confidence Level Whenever Performing Only One Tail Test.

When the parameter is	Then	And	We Should
within the confidence interval	H_0 is valid	H_1 is invalid	Support H_0 and Reject H_1
not within the confidence interval	H_0 is invalid	H_1 is valid	Reject H_0 and Support H_1

What are the main **Keywords**?

The parameter is \cdots			
Verbal Statement for H_0	Mathematical Statement for $H_0 \& H_1$	Verbal Statement for H_1	
equal to k	TT 1	not equal to k	
k	$\begin{array}{cccc} H_0: & \cdots &=& k\\ H_1: & \cdots &\neq& k \end{array}$	different from k	
exactly k		not k	
greater than or equal to k		less than k	
at least k	$\begin{array}{cccc} H_0: & \cdots \geq & k \\ H_1: & \cdots < & k \end{array}$	below k	
not less than k	1 · · · · ·	fewer than k	
less than or equal to k		greater than k	
at most k	$\begin{array}{cccc} H_0: & \cdots &\leq & k \\ H_1: & \cdots &> & k \end{array}$	above k	
not more than k		more than k	